570 Short Reports

Phytochemistry, 1976, Vol. 15, p. 570. Pergamon Press. Printed in England.

NAPHTHOQUINONES FROM ZEYHERA TUBERCULOSA*

MARIA DE L. DUARTE WEINBERG, OTTO R. GOTTLIEBT and GEOVANE G. DE OLIVEIRA

Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte; †Instituto de Química, Universidade de São Paulo, Brasil

(Received 13 September 1975)

Key Word Index—Zeyhera tuberculosa; Bignoniaceae; lapachol; α -lapachone; dehydro- α -lapachone; 4-hydroxy- α -lapachone; zeyherol.

A report that the extracts of Zeyhera tuberculosa (Vell.) Bur., an arborescent Bignoniaceae species, appear to have anti-tumour properties, stimulated the examination of a leaf extract and led to the isolation of 5,6,7-trimethoxyflavone and 5,6,7,8-tetramethoxyflavone [2]. The present report concerns the examination of a trunk wood extract which led to the isolation of sitosterol, β -amyrin, lapachol, dehydro- α -lapachone (1), α -lapachone (2a), 4-hydroxy- α -lapachone (2b) and zeyherol [1].

The structure of 4-hydroxy- α -lapachone (2b), $C_{15}H_{14}O_4$, a derivative of α -lapachone (2a), $C_{15}H_{14}O_3$, resulted upon comparison of the PMR spectra of both compounds. The triplet (τ 7·37) due to the benzylic methylenes of 2a was replaced by a triplet (τ 5·13) due to an oxymethine proton in the spectrum of 2b. The secondary nature of the carbinol function was confirmed by the strong paramagnetic shift (1·18 ppm) of this signal upon acetylation. In accordance with expectation 2b was easily transformed into 1 by treatment with acid.

EXPERIMENTAL

Isolation of the constituents of Zeyhera tuberculosa. Plant material was collected at Cipó Ridge, Minas Gerais State, and identified by the botanist J. L. Pedersoli. A ground trunk wood sample (8 kg) was extracted successively with C₆H₆ and EtOH. The C₆H₆-extract (28 g) was chromatographed on

silica (500 g) yielding the following useful fractions with the indicated eluants: A_1 – A_6 (C_6H_6) and A_7 (C_6H_6 –CHCl₃, 1:1). A_1 was recrystallized from EtOH giving lapachol (2·16 g). A_2 was recrystallized from EtOH giving 1 (191 mg). A_3 was recrystallized from EtOH giving β -amyrin (154 mg). A_4 was recrystallized from EtOH giving 2a (413 mg). A_5 was recrystallized from EtOH giving sitosterol (1·85 g). A_6 was purified by passage through Sephadex LH 20 (MeOH) giving 2b (1·12 g). A_7 was purified by passage through Sephadex LH 20 (MeOH) giving zeyherol (84 mg).

Lapachol. Yellow crystals, mp and mmp with an authentic sample 138-140° (lit. [3] mp 140°).

Dehydro-α-lapachone (1). Red crystals, mp, UV, IR and PMR identical to data given in lit. [3].

 α -Lapachone (2a). Yellow crystals, mp, UV, IR identical to data given in lit. [3]. PMR (CDCl₃ τ): 1·81–2·45 (m, C₆H₄), 7·39 (t, J 6·5 Hz, CH₂), 8·20 (t, J 6·5 Hz, CH₂), 8·58 [s, C(Me)₂]. MS (m/e): 242 (98%) M, 228 (19), 227 (100), 214 (21), 199 (19), 196 (9), 181 (12), 171 (6), 160 (7), 159 (58), 158 (17).

4-Hydroxy-α-lapachone (2b). Yellow oil (M found 258-0898. C_{1.5}H_{1.4}O₄ requires 258-0892). $J_{\rm max}^{\rm Him}$ (cm⁻¹): 3500, 2990, 1685, 1645, 1615, 1600, 1580, 1335, 1305, 1270, 1200, 1130, 1045, 990, 955, 840, 740. $J_{\rm max}^{\rm EtoH}$ (nm): 245, 250, 280, 330 (ε 41 200, 43 000, 29 900, 5200); $J_{\rm max}^{\rm EtoH}$ (nm): 250, 274 (ε 23 200, 39 700). PMR (CDCl₃, τ): 1-98-2·50 (m, C₆H₄), 5·13 (t, J 6·0 Hz, CHOH), 6·28-6·55 (broad s, OH), 8·00 (d, J 6·0 Hz, CH₂), 8·52 (s, Me), 8·62 (s, Me). MS (m/e): 258 (9%) M, 243 (3), 203 (27), 202 (11), 176 (26), 146 (36), 105 (28), 98 (33), 83 (100). Acetate (2c). Yellow crystals, mp 118-120° (EtOH). $J_{\rm max}^{\rm EtoH}$ (nm): 223 inf., 245, 251, 283 (ε 22 800, 36 900, 38 700, 27 300). PMR (CDCl₃, τ): 1·90-2·47 (m, C₆H₄), 3·95 (t, J 5·0 Hz, CHOAc), 7·90 (d, J 5·0 Hz, CH₂), 7·97 (s, COMe), 8·50 (s, Me), 8·54 (s, Me). Dehydro-derivative. A solution of 2b (80 mg) in dry C₆H₆ (100 ml) and p-toluenesulphonic acid (0·1 g) was heated under reflux (30 min). The mixture was cooled to room temp., washed with aq. 10% NaHCO₃, dried with Na₂SO₄ and evaporated under red pres. The residue was recrystallized from EtOH giving 1 (30 mg; 40%).

REFERENCES

- Chagas da Silveira, J., Gottlieb, O. R. and Oliveira, G. G. (1975) Phytochemistry 14, 1829.
- Kutney, J. P. and Hanssen, H. W. (1971) Phytochemistry 10, 3298.
- Burnett, A. R. and Thomson, R. H. (1967) J. Chem. Soc. C. 1261, 2100.

^{*} Part 2 in the series "The Chemistry of Brazilian Bignoniaceae". For Part 1 see ref. [1]. Taken from part of the M.S. thesis submitted by M. de L.D.W. to Universidade Federal de Minas Gerais (1975). Sponsored by Ministério do Planejamento (FINEP contract FNDCT No 154/C.T.), Conselho Nacional de Pesquisas and Conselho de Pesquisas da Universidade Federal de Minas Gerais.